New Ca 2 + - buffers for enhanced performance
نویسندگان
چکیده
2nd ECS Workshop 2009 Annexins, targets and calcium-binding proteins in pathology June 3–6, 2009, Smolenice, Slovakia
منابع مشابه
Study on new crashworthy buffers in railway
At the collision time, a lot of energy is generated during a short period of time that causes large deformations in bodies. One of the most important parts of wagon in railway is a buffer which may absorb the energy during an impact. It should be mentioned that normal buffers only absorb the energy resulted from a crash elastically. In the present paper, it is tried to use inversion mode of ...
متن کاملAn alien divalent ion reveals a major role for Ca²⁺ buffering in controlling slow transmitter release.
Ca(2+)-dependent transmitter release occurs in a fast and in a slow phase, but the differential roles of Ca(2+) buffers and Ca(2+) sensors in shaping release kinetics are still controversial. Replacing extracellular Ca(2+) by Sr(2+) causes decreased fast release but enhanced slow release at many synapses. Here, we established presynaptic Sr(2+) uncaging and made quantitative Sr(2+)- and Ca(2+)-...
متن کاملEF-hand protein Ca2+ buffers regulate Ca2+ influx and exocytosis in sensory hair cells.
EF-hand Ca(2+)-binding proteins are thought to shape the spatiotemporal properties of cellular Ca(2+) signaling and are prominently expressed in sensory hair cells in the ear. Here, we combined genetic disruption of parvalbumin-α, calbindin-D28k, and calretinin in mice with patch-clamp recording, in vivo physiology, and mathematical modeling to study their role in Ca(2+) signaling, exocytosis, ...
متن کاملHypoxic remodeling of Ca2+ stores in type I cortical astrocytes.
Prolonged periods of hypoxia are deleterious to higher brain functions and increase the likelihood of developing dementias. Here, we have used fluorimetric techniques to investigate the effects of chronic hypoxia (2.5% O(2), 24 h) on Ca(2+) stores in type I cortical astrocytes, because such stores are crucial to various astrocyte functions, including Ca(2+)-dependent modulation of neuronal acti...
متن کاملMultiple cytosolic calcium buffers in posterior pituitary nerve terminals
Cytosolic Ca(2+) buffers bind to a large fraction of Ca(2+) as it enters a cell, shaping Ca(2+) signals both spatially and temporally. In this way, cytosolic Ca(2+) buffers regulate excitation-secretion coupling and short-term plasticity of release. The posterior pituitary is composed of peptidergic nerve terminals, which release oxytocin and vasopressin in response to Ca(2+) entry. Secretion o...
متن کامل